
Economizing in Geant4
Eric Church, LArSoft mtg, 23-Feb-2011.

Tuesday, February 22, 2011

Problem: huge memory/CPU
resources needed in Geant4

• These jobs in LArG4 module can get
enormous.

• Jobs that run on EXPTgpvm01 begin to fall
over en masse on condor local nodes.

• Seems to me we have 2GB/node, as Dennis
has dialed it on local nodes. Can people
please verify with top, e.g., that your job
exceeds this and report back to me?

Tuesday, February 22, 2011

LArVoxelReadOut.cxx
• Huge amount of cpu/wallclock time spent

here for small voxels.

• There is a loop here over each tiny little step
for each particle’s energy deposition, in
which the (x,y,z) is queried and a new
LArVoxel object is created or (copied? and)
contributed to.

• Potential quick solution for now: Increase your voxelSize

services.user.LArVoxelCalculator.VoxelSizeX: 0.3 # cm x10-30 larger than default.
services.user.LArVoxelCalculator.VoxelSizeY: 0.3 # cm
services.user.LArVoxelCalculator.VoxelSizeZ: 0.3 # cm

Tuesday, February 22, 2011

Track-Stacking
• User has to implement three methods.
• G4ClassificationOfNewTrack ClassifyNewTrack(const G4Track*)
– Invoked every time a new track is pushed to G4StackManager.
– Classification

• fUrgent - pushed into Urgent stack
• fWaiting - pushed into Waiting stack
• fPostpone - pushed into PostponeToNextEvent stack
• fKill - killed

• void NewStage()
– Invoked when Urgent stack becomes empty and all tracks in Waiting stack are

transferred to Urgent stack.
– All tracks which have been transferred from Waiting stack to Urgent stack can be

reclassified by invoking stackManager->ReClassify()
• void PrepareNewEvent()
– Invoked at the beginning of each event for resetting the classification scheme.

Tuesday, February 22, 2011

Track Stacking
This is now implemented in LArG4/LArG4.cxx using
from flag at LArG4/largeantmodules.fcl.
lbne_largeant:

{

 module_type: "LArG4"

 GenModuleLabel: "generator"

 GeantCommandFile: "LArG4/LArG4.mac"

 DumpParticleList: false

 DumpLArVoxelList: false

 DebugVoxelAccumulation: 0

 VisualizeEvents: false

 PMTSensitiveVolumeName: ""

 SmartStacking: true

}

Tuesday, February 22, 2011

Track Stacking
LAr20MuonStackingAction.cxx : public G4UserStackingAction

LAr20MuonStackingAction::ClassifyNewTrack(const G4Track * aTrack)
{ //snippet

switch(stage)

 {

 case 0: // Stage 0 : Primary cosmic muons only

 if(aTrack->GetParentID()==0)

 { classification = fUrgent; }

...

 case N:

 TString volName(InsideTPC(aTrack));

 if(volName.Contains(geom->GetLArTPCVolumeName()))

 {

 classification = fUrgent;

 break;

 }

 else if (volName.Contains("unknown"))

 {

 classification = fKill;

 break;

 }

Track the primary cosmics

Everything in TPC is Urgent

Tracks in outer space killed.

Tuesday, February 22, 2011

Track-Stacking

 if (! volName.Contains(geom->GetLArTPCVolumeName()) && aTrack->GetDefinition()-
>GetPDGEncoding()==11 && ((TString)aTrack->GetCreatorProcess()->GetProcessName
()).Contains("muIoni"))

 {

 classification = fKill;

 break;

}

classification = fUrgent;

//end snippet

Kill the rock ionization electrons

declare all else as urgent

Tuesday, February 22, 2011

Results

• 10000 cosmic events in LBNE/LAr20 used
to take 5-10 days, if they had survived that
long.

• These 2 things -- voxelSize increase and
trackStacking - made them run in 20
minutes.

• Half, not all, of my condor jobs die.

Tuesday, February 22, 2011

Future G4 Economizing

• Explore G4’s Scoring for rare processes

• Look further into LArVoxelReadout. Can it
be streamlined? Is there some horribly
expensive operation currently that can be
worke around so that voxelSize can again
be reduced?

Tuesday, February 22, 2011

